M.Sc. (Mathematics) 4th Semester STATISTICS–II Paper—MATH-587

Time Allowed—2 Hours] [Maximum Marks—100

- Note :— There are EIGHT questions of equal marks. Candidates are required to attempt any FOUR questions.
- 1. (a) Let X_1 , ..., X_n be a random sample from normal distribution N(μ , σ^2). Prove that $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$,

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n}$$
 are independent random

variables.

- (b) Define F-distribution. Find its mean and variance.
- 2. (a) Let X₁, ..., X_n be a random sample from a continuous population with pdf :

 $F_{X}(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$

- (i) Find the pdf of r^{th} order statistic $X_{(r)}$, hence, find the mean and variance of $X_{(r)}$, for $1 \le r \le n$.
- (ii) Find the distribution of range $R = X_{(n)} X_{(1)}$.

14815(2721)/II-5820 1 (Contd.)

- (b) If X has a chi-square distribution with n degree of freedom, find moment generating function of X.
- 3. (a) Let $X_1, ..., X_n$ be a random sample of size n from $N(\mu, \sigma^2)$ distribution, where μ and σ^2 are unknown. Find sufficient statistics of μ and σ^2 .
 - (b) Let X₁, ..., X_n be a random sample of size n from U(-θ, θ) distribution. Find MLE, MME of θ.
 - (c) If the estimator T_n based on a random sample of size n is such that $E(T_n) \rightarrow \theta$ and $V(T_n) \rightarrow 0$, prove that T_n is consistent estimator of θ . Hence prove that sample mean is always consistent estimator for population mean.
- 4. (a) Let $X_1, ..., X_n$ be a random sample from U(0, θ), where θ is unknown. Obtain the UMP test of size α for testing $H_0: \theta \le 1$ versus $H_1: \theta > 1$. Find the value of critical constant such that the UMP test is of size 0.5.
 - (b) State and prove Neyman-Pearson's lemma for most powerful test.
- 5. (a) Let $X_1, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$, where μ and σ^2 are unknown. Find the likelihood ratio test for testing $H_0: \mu = \mu_0$ versus $H_a: \mu \neq \mu_0$.
 - (b) Describe the large sample test procedure for testing the significance of difference of proportions of two independent populations.

- 6. (a) Describe applications of a t distribution for testing the significance of (i) single mean and (ii) difference between two means by clearly stating the assumption and hypotheses involved in these.
 - (b) Briefly describe test of goodness of fit.
- 7. For the general linear model of full rank $Y = X\beta + \epsilon$, $E(\epsilon) = 0$ and $E(\epsilon \epsilon') = \sigma^2 I$, find least square estimator $\hat{\beta}$ of β . Hence, find $E(\hat{\beta})$, $cov(\hat{\beta})$. Also prove that $\ell'\hat{\beta}$ is best linear unbiased estimator of $\ell'\beta$.
- (a) Give complete analysis of two way classified data for fixed effect model.
 - (b) Define estimability of a linear parametric function in a Gauss Markov model. State and prove a necessary and sufficient condition of estimability.

3